猛暑に風鈴はいいものだ。ただし、チリンチリンと、時に耳障りになることもある。そこで、音は出ないが、量子ビットの不思議な世界を想起させる「量子風鈴」なるものを私の研究部屋に吊るしてみた。
![]() |
熊本城天守閣から吊り下げられたかのような量子風鈴 |
「量子風鈴」のある研究室風景 |
扇風機の風に乗ってゆらつらするので、少しは涼しげな気分になる。だが実は、それ以上に、量子コンピューティングの世界を探求して行く意欲を持続させるための"おまじない"でもある!
I am a professor emeritus of CS at Kanagawa Institute of Technology, Japan. Originally my specialty was parallel and distributed systems. My current interests include machine learning, natural language processing, creating mobile apps with MIT App Inventor, and quantum computing. In the web version of this blog, clicking the icon on the right (a plastic sphere) will take you to the "List of Quantum Computing Articles". - Fujio Yamamoto (for e-mail, add "@ieee.org" after "yamamotof")
猛暑に風鈴はいいものだ。ただし、チリンチリンと、時に耳障りになることもある。そこで、音は出ないが、量子ビットの不思議な世界を想起させる「量子風鈴」なるものを私の研究部屋に吊るしてみた。
![]() |
熊本城天守閣から吊り下げられたかのような量子風鈴 |
「量子風鈴」のある研究室風景 |
扇風機の風に乗ってゆらつらするので、少しは涼しげな気分になる。だが実は、それ以上に、量子コンピューティングの世界を探求して行く意欲を持続させるための"おまじない"でもある!
お米の値段、流通が話題になっています。近所を散歩していて、すっかり少なくなった水田ですが、まだ7月中旬だというのに、写真の通り、水田に水が全く無い!ひび割れしているじゃないですか!これじゃ不作になって、米の値段がさらに高騰するのではないか?
![]() |
「中干し」でひび割れした水田(厚木市 2025-7-15) |
いつ頃からこのような手法が取られていたのか?生成AIからの回答によれば、江戸時代中期にはすでに行われていた。つまり、水の管理の基本として、灌漑と排水が行われていた。17世紀末に書かれた「農業全書」(宮崎安貞著)には、「中干し」を指すと思われる以下の叙述があるという:
「分げつ過多の稲は倒れやすし、時に水を抜きてこれを止むるべし」
🟢感想
私は、普段、量子コンピューティングやPythonプログラム開発に生成AIを使っている。だが、今回の様な調べ物にも、とても有用だと分かる。時代は変わってきた。今後はさらに、AIエージェントが、人に変わって勝手に?調べ物もしてくれるらしい。昨日、ソフトバンクからその事業化の発表もあった。小学生の夏の自由研究なども様変わりするだろう。ああ!
![]() |
IBM Quantum Classic Platformのサービス終了 |
![]() |
量子回路の編集と量子状態表示(Q-Sphere, Probability, StateVector) |
![]() |
OpenQASM(右側)との連携 |
6月に入りまだ梅雨前ですが、初夏らしい日が続いています。散歩道(厚木市郊外)で写した数枚の写真をご覧ください。 2025年6月6日午前の散歩にて。
かっての同僚の先生から、「もうトウモロコシが実っているのですか?北海道の感覚では、もっと後ですよね。そういえば、大通公園のとうきび売りの露店は本当に少なくなりました。」とのコメントをいただきました。そうなんですね。北海道では、「トウモロコシ」とは言わずに、「とうきび」と呼びます。でも、東京近辺に長年住んでいるとそれに合わせてしまったことに気が付く。懐かしい響き。
![]() |
Fig.1 Quantum state of Mermin-Peres Magic (4-qubit) |
🔴3D display of quantum states using Qiskit's Qsphere
![]() | |
|
IBM Quantum無料利用枠の新しい計算方法:最近気付いたことだが、私にとってはちょっと重要事項なので書き留める!
![]() |
Here’s the image illustrating the change in IBM Quantum’s free usage calculation method. |
![]() |
An example |
🔴感謝:本ブログへのアクセス回数が20万回に到達
2016年末に開設したこのブログ、このほど、20万回webビュー(アクセス)に達した。直近の約130件(これまでの総計は約500件)はほとんど量子コンピューティングに関する記事である。ブログアイコンもそれらしくした。ご愛読、そして、フィードバックしていただいた方々に御礼申し上げたい。
In the previous article, we introduced a new book on quantum computing. However, many people may want to first learn basic mathematics before reading such books. I would like to briefly introduce the following book as one such book. Generally speaking, the relationship between this book and the previous one is as follows:
This book is a large volume of 539 pages. It provides a very thorough explanation of the basics of mathematics related to quantum computing. Parts 1 and 2 are basic mathematics, mainly linear algebra. However, since Dirac Notation (bra-ket) is already used here, it becomes clear that this is not purely basic mathematics, but is aimed at quantum computing. The authors explain that readers who have already mastered the basics of linear algebra can skip these parts and move on to Part 3. Even for such readers, Part 2 is very useful for reviewing points that they may have forgotten. In other words, this book also serves as an encyclopedia.
In the third and fourth parts, the most important operations in quantum computing are explained in detail, with a focus on "Tensor products". Although it is not very noticeable, it is worth noting that the "Change of Basis" introduced in the second part is explained in more detail in this third part. This will be important in many fields, including quantum key distribution later. You will also see that the "Kronecker Product" is important in simplifying quantum computing. More advanced content such as "Singular Value Decomposition" is also included. Furthermore, one of the outstanding features of this book is that "Probability", another foundation of quantum computing, is dealt with extensively in the fourth part.
At the beginning, there is a "Level Indicator" explanation, which is useful for understanding the level of difficulty of the content. However, it would be even better if it had a marking to indicate which of the minimum necessary knowladge is required to read the second book, "Quantum Computing & Information." This is because this book contains a huge amount of content, and some people want to study efficiently. For example, it may be okay to skip "Discrete Fourier Transform" and "Markov Chains" for the time being.
【要旨】古典的手法では見つけられなかった(or できなかった)ことが、量子的手法では可能になったという事例があれば勇気付けられる。その一つとして、量子計算を用いたQSVC(Quantum Support Vector Classifier)が、古典SVCよりも高い精度で分類できる一つの例を示す。この例に対しては、古典SVCでは見つからなかった、新たな分類決定境界が、量子QSVCで見つけられたと言える。これは、量子機械学習に取り組む上で意義がある事例と思われる。
🔴対象としたデータセットGaussian-Parity
今回用いたデータセットGaussian-Parityの一例を図1に示す。右側の表は、その内容である。2つの特徴量(Feature1、Feature2)とラベル(0 or 1)で構成される300サンプルが含まれる。これをMiniMax(0〜π)スケーリングして散布図にしたものが左側の図である。ラベル0とラベル1のデータが、斜めに交差して分布しているので、境界線を引くのは難しそうに見える。
🔴古典的SVCによるクラス分け
このデータセットに対して、まず、古典SVCでクラス分けした。300サンプルの7割を訓練用として学習させた結果を、残り3割のサンプルをテスト用として評価した分類の精度は81%であった。学習結果を反映した分類の決定境界を図2に示した。かなりよく分類できていると思われる。SVCの威力が感じられた。(SVCに与える種々のパラメータの値で結果は変動するが。)