【要旨】前回の記事では、量子位相推定の理論と計算法の詳細を示した。今回は、簡単な例でその計算を 確認する。すでに書いたかもしれないが、量子位相推定は、Shor's素因数分解アルゴリズムの中核でもある。
🔴量子位相推定回路の一般形
前回記事で述べた量子位相推定のための回路の一般形をFig.1に再掲する。図の下部に、m-qubitのユニタリ行列Uの固有状態|v>を与えている。それに対して、上部では、前半でn-qubitを使って、制御付きUゲートの繰り返しを構成し、後半で逆量子フーリエ変換IQFTを適用する。最後にn-qubit全体を測定する。詳細は、前回記事をご覧いただきたい。
🔴位相シフトゲートP(2π/3)で試す
具体例として、位相シフトゲートP(2π/3)の場合の量子回路をFig.2のように構成した。IBM QuantumのComposerを利用した。この位相ゲートに対する固有状態として、|1>を与えている。これは、Fig.1においては、m=1の場合となる。そして、量子ビット数n=3, 4, 5の3ケースの回路を用意した。制御付きPゲートを、2個、4個、8個、16個と繰り返す必要があるが、回路図を簡単にするため、Composerのカスタムゲート機能を使った。すなわち、冗長になるゲートの繰り返しを、p066p_2, p066p_4, ... , p066p16のような新たなゲートを作ることで簡単にしている。
🔴量子位相推定の実行結果
上記の3ケースに対する実行(Composerシミュレーション)結果をFig.3に示す。結論から言うと、3ケースとも、確率約70%で、妥当な位相の値が得られた。当然ながら、量子ビット数を増やすに従って結果の精度が向上する。
対象としたゲートP(2π/3)の固有状態|1>の固有位相は2π/3 = 120°である。n = 3, 4, 5の測定結果は、いずれも、古典ビット数nの範囲では最適値を与えている。なお、測定結果のビット列(2進整数)からどのように位相角度を求めるのかについては、すでに前報の後半で述べたのでここでは略している。
🔴量子コンピュータ実機ではどうなのか?(結論:negative)
上記Fig.3に相当する、量子コンピュータ実機での結果も得た。しかし、.... ここではその詳細データの掲載はやめておく。現時点では、期待した結果ではなかったからである。この位相推定問題は、現在の量子コンピュータ(ハードウェア)にとって、大変苦手の部類に入るのかもしれない。たとえば、Fig.3のn = 5 qubitsの場合、測定結果01011(古典5ビットでの最適解)は確率70%で得られたが、量子コンピュータ実機では、その確率は10〜20%前後でしかなかった。つまり、解から遠い測定結果も同程度の確率で見られるのであった。(もしも私の誤りであることが判明したらお詫びするが....)
0 件のコメント:
コメントを投稿