🔴感謝:本ブログへのアクセス回数が20万回に到達
2016年末に開設したこのブログ、このほど、20万回webビュー(アクセス)に達した。直近の約130件(これまでの総計は約500件)はほとんど量子コンピューティングに関する記事である。ブログアイコンもそれらしくした。ご愛読、そして、フィードバックしていただいた方々に御礼申し上げたい。
・掲載サイト:Linkedin記事
I am a professor emeritus of CS at Kanagawa Institute of Technology, Japan. Originally my specialty was parallel and distributed systems. My current interests include machine learning, natural language processing, creating mobile apps with MIT App Inventor, and quantum computing. In the web version of this blog, clicking the icon on the right (a plastic sphere) will take you to the "List of Quantum Computing Articles". - Fujio Yamamoto (for e-mail, add "@ieee.org" after "yamamotof")
🔴感謝:本ブログへのアクセス回数が20万回に到達
2016年末に開設したこのブログ、このほど、20万回webビュー(アクセス)に達した。直近の約130件(これまでの総計は約500件)はほとんど量子コンピューティングに関する記事である。ブログアイコンもそれらしくした。ご愛読、そして、フィードバックしていただいた方々に御礼申し上げたい。
In the previous article, we introduced a new book on quantum computing. However, many people may want to first learn basic mathematics before reading such books. I would like to briefly introduce the following book as one such book. Generally speaking, the relationship between this book and the previous one is as follows:
This book is a large volume of 539 pages. It provides a very thorough explanation of the basics of mathematics related to quantum computing. Parts 1 and 2 are basic mathematics, mainly linear algebra. However, since Dirac Notation (bra-ket) is already used here, it becomes clear that this is not purely basic mathematics, but is aimed at quantum computing. The authors explain that readers who have already mastered the basics of linear algebra can skip these parts and move on to Part 3. Even for such readers, Part 2 is very useful for reviewing points that they may have forgotten. In other words, this book also serves as an encyclopedia.
In the third and fourth parts, the most important operations in quantum computing are explained in detail, with a focus on "Tensor products". Although it is not very noticeable, it is worth noting that the "Change of Basis" introduced in the second part is explained in more detail in this third part. This will be important in many fields, including quantum key distribution later. You will also see that the "Kronecker Product" is important in simplifying quantum computing. More advanced content such as "Singular Value Decomposition" is also included. Furthermore, one of the outstanding features of this book is that "Probability", another foundation of quantum computing, is dealt with extensively in the fourth part.
At the beginning, there is a "Level Indicator" explanation, which is useful for understanding the level of difficulty of the content. However, it would be even better if it had a marking to indicate which of the minimum necessary knowladge is required to read the second book, "Quantum Computing & Information." This is because this book contains a huge amount of content, and some people want to study efficiently. For example, it may be okay to skip "Discrete Fourier Transform" and "Markov Chains" for the time being.
【要旨】古典的手法では見つけられなかった(or できなかった)ことが、量子的手法では可能になったという事例があれば勇気付けられる。その一つとして、量子計算を用いたQSVC(Quantum Support Vector Classifier)が、古典SVCよりも高い精度で分類できる一つの例を示す。この例に対しては、古典SVCでは見つからなかった、新たな分類決定境界が、量子QSVCで見つけられたと言える。これは、量子機械学習に取り組む上で意義がある事例と思われる。
🔴対象としたデータセットGaussian-Parity
今回用いたデータセットGaussian-Parityの一例を図1に示す。右側の表は、その内容である。2つの特徴量(Feature1、Feature2)とラベル(0 or 1)で構成される300サンプルが含まれる。これをMiniMax(0〜π)スケーリングして散布図にしたものが左側の図である。ラベル0とラベル1のデータが、斜めに交差して分布しているので、境界線を引くのは難しそうに見える。
🔴古典的SVCによるクラス分け
このデータセットに対して、まず、古典SVCでクラス分けした。300サンプルの7割を訓練用として学習させた結果を、残り3割のサンプルをテスト用として評価した分類の精度は81%であった。学習結果を反映した分類の決定境界を図2に示した。かなりよく分類できていると思われる。SVCの威力が感じられた。(SVCに与える種々のパラメータの値で結果は変動するが。)
Theoretically, the success rate of Mermin-Peres magic, a 4-qubit application using quantum entanglement, is 100%. When this was executed on ibm_torino (Heron r1), the success rate was 92% due to errors caused by noise. This is a big improvement from the 86% success rate on ibm_brisbane (Eagle r3) a while ago. The reason for this is that the error rate was 14% on ibm_brisbane, but was reduced to 7.9% on ibm_torino. Figure 1 shows the details.
【要旨】量子もつれを用いた例題Mermin-Peres-Magicを、IBM量子コンピュータ新鋭機ibm_torino (Heron r1プロセッサ)で実行させた結果、ノイズ等によるエラーの発生率が、以前のibm_brisbane (Eagle r3プロセッサ)に比べて、ほぼ半減することが分かった。これにより、所望の正解が得られる成功率は、86%から92%に大きく改善された。今後出現するであろう華々しい成果は、このような長年の地道な研究開発によるものなのだと実感できた気がする。
🔴誤り低減を目指す量子コンピュータの進展
Eagle(鷲)は攻撃的で強く、Heron(鷺)はしなやかで強いというイメージがあるという。IBMがそれを念頭において量子コンピュータに命名したのかは定かではない。IBMはこれまで、無償で量子プロセッサEagle r3(マシン名 ibm_kyiv, ibm_brisbane)を提供してきたが、この3月から、新鋭機Heron r1(マシン名 ibm_torino)を追加した。Heronは、Eaglelよりも、大幅にエラー発生率が低減されて強力になったという。そのハードウェアの仕組みは私には分からないが、最大の難題の一つであるエラー低減に向けて着実に進展していることが窺える。