【要旨】本稿は、これまでに自作したモバイル量子回路シミュレータQsim_multiの適用性をテストするものである。例題として、最近発刊されたある書籍に載っている、逆量子フーリエ変換と位数発見問題を取り上げた。これらは、Shorの素因数分解アルゴリズムの根幹を成している。結論として、自作シミュレータQsim_multiがこれらを正常に処理できることを確認できた。
🔴 A new book on quantum computing
最近、Nivio Dos Santos著の新刊(FIg.1)を購入した。タイトルは、"How to code for Quantum Computers"となっているが、いわゆるハウツー本ではなく、基本概念がコンパクトにまとめられている。本を開いたとたんに、何か楽しいことが書いてある、という雰囲気がある。後半には、量子フーリエ変換、量子位相推定、Shorのアルゴリズムの計算が詳細に説明されている。だから、初級から中級レベルの本だと言える。
本文には、プログラムコードはほとんど出てこないが、Google Cirq環境用のPythonコード(Jupyter Notebook)がWeb上に公開されているので重宝する。
この本に掲載されている以下の二つの例題を、私の自作モバイル量子シミュレータで稼働させるのである。だが、ここで重要なことに気づいた。それは、量子ビットの並べ順である。私のシミュレータは、IBM Qiskitなどと同じだが、Cirqでは、それが逆順になっているのである。したがって、それを逆転させる必要があった。しかし、そうしても、例えば、量子フーリエ変換の結果などは、各基底の確率は同一になっても、位相は異なるだろう。それを踏まえて扱えば問題ない。
🔴 Example1: Using Inverse-QFT
まず、逆量子フーリエ変換を使う例である。Fig.2はこの書籍で説明されている回路図と16個の基底からなる量子状態である。逆量子フーリエ変換invQFTは展開形で示されている。それぞれの円内の塗り潰した小さな円は確率を示し、赤い直線の傾きは位相を示す。
これを私のシミュレータ用に変換して実行した結果をFig.3に示す。このシミュレータには、逆量子フーリエ変換IQFTを内蔵しているので、それをそのまま使った。量子状態をFig.2と比較すると、確率は同じであり、位相は鏡像反転している。この結果から、私のシミュレータは、正常に稼働していることが分かる。🔴 Example2: Finding the order of [gk mod N = 1]
次に、Shorのアルゴリズムで重要な位数発見問題である。ここでは、具体例「7k mod 15 = 1」の位数、すなわち、この式を満たす最小の整数kを求める。
量子回路と位数発見結果を以下に示す。Fig.4はCirq環境であり、Fig.5は私のシミュレータによる。「7k mod 15 」とinvQFTの適用後の測定結果は、3-qubitシステムにおいて、両者で一致した。すなわち、8個の可能性のうち、010、100、000、110の四つだけが、それぞれ等しい確率で測定される。その結果を有理数近似して1/4が得られ、位数が4であることがわかった。なぜそう言えるのかの詳細と、Shorのアルゴリズムとの関係は以下に示されている:
2024年7月9日火曜日
Shor's Algorithm:量子コンピューティングの学びの最高峰
Fig.4では、測定結果は、1000回試行おける出現頻度で示してあり、Fog.5では確率計算結果として示している。
なお、Fig.5の私のシミュレータでは、測定した4ケース(3-qubit)の値が、それぞれ四つに分かれている。これは少し見にくいので、Fig4.のようにまとめた方が良い。次回のバージョンアップの際に対処したい。🔴結論
逆量子フーリエ変換と位数発見問題の簡単な場合について、私のモバイル量子回路シミュレータは、Google Cirq環境で実行されたのと同一の結果を与えた。一定の適用性を確認できたと考える。
0 件のコメント:
コメントを投稿