English version here
【要旨】量子コンピューティングの代表的な開発環境として、IBM Qiskitを利用している。そのバージョンアップは頻繁になされて、すぐにdeprecated(非推奨、または廃止)となる部分が多く、困惑する場合がある。量子ゲートや量子回路の記述などはほとんど変わらないが、シミュレータ、および実機での実行方法などの変更が多発する。ここでは、現時点(2024-11-10)での典型的な実行方法3つをメモして置きたい。
🔴例題:Shorの素因数分解アルゴリズムの量子計算部分
ここでは、Shorのアルゴリズムの主要部である位数計算(order finding)量子回路を動かすことだけに注目する。Fig.1は、デモとして動かすための、極く小さな整数15の素因数分解(15 = 3 × 5)の場合である。Shorのアルゴリズム全体とFIg.1の量子回路との関係などは今回は説明しないので、例えば以下のような過去記事をご覧いただきたい。
🔴[1]Qiskit Samplerによるシミュレーション(ローカルPCで実行)
Fig.1のような量子回路(名称:qc)の実行(下位3量子ビットの測定を含む)を行うための最も一般的なシミュレータとして、Qiskit Samplerがある。その利用の要点は以下のとおりである。このシミュレーションの結果(1,000 shotsの測定結果)をFig.2に示す。
# シミュレーションの実行
from qiskit_aer.primitives import Sampler
sampler = Sampler()
result = sampler.run(qc, shots=1000).result()
# 測定結果の取り出しと図示
quasi_dists = result.quasi_dists
binary_quasi_dist = quasi_dists[0].binary_probabilities()
counts_dict = quasi_dists[0].binary_probabilities()
counts = Counts(counts_dict)
plot_histogram(counts)
🔴
[2]実機のノイズモデルを組み込んだシミュレーション(ローカルPCで実行) 上記では、シミュレーション結果(Fig.2)として、4つの基底に対応するカウントがほぼ25%づつで、それ以外の基底のカウントは、ノイズがないので、理論通りゼロとなった。このような通常のSamplerによる以外に、量子コンピュータ実機で発生するノイズを反映させたシミュレーションを行うこともできる。
Fig.3は、ibm_sherbrookeという名の実機(127-qubits)で発生するノイズモデルを、AerSimulatorに組み込んで実行した結果である。確かに、Fig.2では発生しなかったノイズによる影響が出ている。実機で実行する前の事前検討などに有用であろう。
# 重要なimport
from qiskit_aer import AerSimulator
from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager
from qiskit_ibm_runtime import QiskitRuntimeService, SamplerV2 as Sampler
# リアルマシンのノイズモデルをセット
real_backend = service.backend("ibm_sherbrooke")
aer = AerSimulator.from_backend(real_backend)
pm = generate_preset_pass_manager(backend=aer, optimization_level=1)
isa_qc = pm.run(qc) # 実マシン向けのtranspile
sampler = Sampler(mode=aer)
result = sampler.run([isa_qc],shots=1000).result() # 実行
# 測定結果の取り出しと図示
pub_result = result[0]
counts = pub_result.data.c.get_counts() # 'c'を指定することに注意!
plot_histogram(counts)
🔴[3]IBM Quantumマシン実機での実行(web経由でジョブを投入)
次に、IBM Quantumマシン実機へweb経由でジョブを投入し、実行を行った。マシンは、上記のノイズモデルで与えたものと同じibm_sherbrookeである。ジョブはバッチ形式で実行されるので、その終了後にWeb経由で実行結果を取り出す。それを表示したものがFig.4である。上記のノイズモデルを反映したシミュレーション結果Fig.3とほぼ同一であることが確認できた。
# 負荷の少なそうなマシンを自動選択
from qiskit_ibm_runtime import SamplerV2 as Sampler
service = QiskitRuntimeService(channel="ibm_quantum", token= "***")
be = service.least_busy(simulator=False, operational=True)
print(f"QPUバックエンド:{be}")
# 実マシン向けのtranspileを行い、Jobを投入
pm = generate_preset_pass_manager(optimization_level=1, backend=be)
ic = pm.run(qc) # Transpile結果
job = Sampler(be).run([ic], shots= 1000)
print(f"ジョブID: {job.job_id()}")
print(f"ジョブI状態: {job.status()}")
# 実行終了後に、結果を取り出し、表示。
from qiskit_ibm_runtime import QiskitRuntimeService
service = QiskitRuntimeService(
channel='ibm_quantum',
instance='ibm-q/open/main',
token='jobに対応するトークン'
)
job = service.job('jab ID')
job_result = job.result()
counts = job.result()[0].data.c.get_counts()
plot_histogram(counts)
この実行の状況をFig.5に示した。Usage = 2 secとなっている。無償ユーザは、毎月10分までのUsageという制約がある。簡単な量子回路の試験には十分であるが、少し複雑な量子回路になると想定外に多くのUsageを使うことになるので、注意が必要である。なお、現時点では、無償で使える実機はFig.6に示すとおり、3機種であった。有償の場合は、これらの他にさらに8機種の実機が利用できる。
🔴実マシンとシミュレータの結果の相違について
現状では、量子コンピュータは種々のノイズが発生するので誤りが起こる。例えば、純粋のシミュレータの結果Fig.2と、実マシンによる結果Fig.4の相違がそれを示している。一概には言えないが、実機で起こる誤りが、必要な計算に与える影響は大きい場合がある。だが、本例題に限って言えば、確率的に位数(order)を探すという性質上、Fig.2とFig.4の差はほとんど問題にならないと言える。
0 件のコメント:
コメントを投稿